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Abstract

In recent years, there has been an enormous quantity of data obtained from the In-
ternational Monitoring System radionuclide network for the verification of the Com-
prehensive Nuclear-Test-Ban Treaty. The complexity of the instruments deployed
here, of the radionuclide sources, and of the myriad of scientific questions related
to treaty verification lead invariably to complex inference problems (associated with
source term estimation) that require the application of sophisticated statistical tools.
In this report, we demonstrate that a rigorous and general framework for addressing
these problems is through Bayesian probability theory, allowing the rational inference
of the posterior probability distribution of the source parameters of interest given any
prior information and available activity concentration measurements. The methodol-
ogy is demonstrated by application to two different problems: namely, the emission
rate profile reconstruction of a radioxenon release from the Fukushima Daiichi nuclear
power plant and source reconstruction (location and emission rate) of a radioxenon
release from the Chalk River Laboratories (CRL) medical isotope production facility.
The sampling of the resulting posterior distribution of the source parameters is un-
dertaken using two different Markov chain Monte Carlo techniques: namely, nested
sampling and multiple-try differential evolution adaptive Metropolis sampling with a
past archive.

For the Fukushima nuclear power plant release, it is demonstrated that the limited

temporal extent of the activity concentration time series obtained from the seven
sampling sites cannot be used to constrain the emission rate profile at a later time.
In particular, the Bayesian credible intervals for the reconstruction of the emission
rate profile provide a quantitative indication of the uncertainty in this quantity, allow-
ing an objective assessment of the fact that the emission rates recovered at the later
times are not constrained by the information in the available activity concentration
data. For the CRL release, it is shown that the principal difficulty in the recon-
struction lay in the correct specification of both the scale and structure of the model
errors used in the Bayesian inferential methodology. Consequently, for this case, two
different measurement models for incorporation of the model errors in the predicted
concentrations are considered. The performance of both of these measurement models
with respect to their accuracy and precision in the recovery of the source parame-
ters is compared and contrasted. In particular, it is shown that the incorporation of
multipliers in the measurement model to compensate for the unknown model errors
lead to significantly improved estimates for the source parameter (both in accuracy
and in precision) compared to the simpler measurement model which does not use
multipliers.
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Significance for defence and security

The International Monitoring System (IMS) radionuclide network has been estab-
lished for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT).
Compliance with the CTBT is a global security issue, and the work reported herein
is significant in that it provides novel and advanced methods for model-based statis-
tical inference relevant to the detection and rapid estimation of an unknown source
term associated with a covert nuclear test. These model-based methods for statistical
inference provide a potentially new approach for a sensor-driven modeling paradigm
involving the fusion of sensor measurements of radionuclide activity concentration
with the predictive outputs (model activity concentration) obtained from advanced
models for atmospheric dispersion. This may lead potentially to significant improve-
ments in situational awareness in the ‘battlespace’ with respect to the important
problem of the determination of the characteristics of an unknown source resulting
from a clandestine nuclear test following the detection of the event by the IMS ra-
dionuclide network.

ii DRDC-RDDC-2014-R71



Résumé

Au cours des dernières années, des quantités considérables de données ont été re-
cueillies grâce au réseau du système de surveillance international (SSI) des radio-
nucléides pour la vérification du Traité d’interdiction complète des essais nucléaires
(TICEN). La complexité des instruments déployés, des sources de radionucléides et
des innombrables questions scientifiques relatives à la vérification du traité donnent
immanquablement lieu à des problèmes de déduction complexes (associés à l’estima-
tion du terme source), ce qui nécessite l’utilisation d’outils statistiques perfectionnés.
Dans le présent rapport, nous allons démontrer qu’un cadre rigoureux et général pour
s’attaquer à ces problèmes est offert par la théorie des probabiliés de Bayes et que
celui-ci permet de procéder à une déduction rationnelle de la distribution de proba-
bilités ultérieure des paramètres des sources, peu importe les informations et mesures
de l’activité volumique disponibles obtenues antérieurement. La méthode est démon-
trée par son application à deux problèmes différents : la reconstruction du profil du
taux d’émission relatif à un rejet de xénon radioactif par la centrale nucléaire de Fu-
kushima Daiichi et la reconstruction des sources (emplacement et taux d’émission)
d’un rejet de xénon radioactif à l’installation de production d’isotopes médicaux des
Laboratoires de Chalk River (LCR). L’échantillonnage de la distribution ultérieure
des paramètres des sources qui en résulte est réalisé à l’aide de deux techniques dif-
férentes de simulation Monte Carlo par chaînes de Markov, soit l’échantillonnage à
emboîtements et l’échantillonnage Metropolis adaptatif à évolution différentielle et à
essais multiples, utilisant des archives antérieures.

Dans le cas du rejet de la centrale nucléaire de Fukushima, il est démontré que la
portée temporelle limitée de la série chronologique de l’activité volumique obtenue
à partir des sept sites d’échantillonnage ne peut pas être utilisée pour restreindre le
profil du taux d’émission ultérieurement. Plus particulièrement, les intervalles de cré-
dibilité de Bayes pour la reconstruction du profil du taux d’émission fournissent une
indication quantitative de l’incertitude à cette quantité, ce qui permet une évaluation
objective du fait que les taux d’émission récupérés à des dates ultérieures ne sont
pas restreints par l’information provenant des données disponibles sur l’activité volu-
mique . Dans le cas des rejets des LCR, il est indiqué que la principale difficulté de la
reconstruction est la spécification correcte de l’échelle et de la structure des erreurs
du modèle utilisé dans la méthode par déduction de Bayes. Par conséquent, dans ce
cas particulier, deux modèles de mesure différents sont envisagés pour l’intégration
des erreurs du modèle dans aux concentrations prévues. Les rendements de ces deux
modèles de mesure, en ce qui a trait à leur exactitude et à leur précision dans la
récupération des paramètres des sources sont comparés et leurs éléments importants
sont mis en évidence. Plus particulièrement, on montre que l’intégration des mul-
tiplicateurs au modèle de mesure dans le but de compenser les erreurs de modèle
inconnues a donné lieu à des estimations considérablement améliorées des paramètres
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des sources (à la fois sur le plan de l’exactitude et de la précision), comparativement
au modèle de mesure plus simple qui n’utilise pas de multiplicateurs.

Importance pour la défense et la sécurité

Le réseau du système de surveillance international (SSI) des radionucléides (IMS, de
l’anglais International Monitoring System) a été mis sur pied pour vérifier le Traité
d’interdiction complète des essais nucléaires (TICEN). La conformité au TICEN est
une question de sécurité mondiale, et les travaux consignés ici sont importants en
ce sens qu’ils offrent des méthodes nouvelles et avancées pour la déduction statis-
tique basée sur un modèle concernant la détection et l’estimation rapide d’un terme
source inconnu associé à des essais nucléaires clandestins. Ces méthodes de déduc-
tion statistique basées sur un modèle fournissent une nouvelle démarche possible au
paradigme de modélisation déterminée par des capteurs, fusionnant les mesures de
capteurs d’activité volumique de radionucléides et les prévisions (activité volumique
du modèle) obtenues à partir de modèles avancés de dispersion atmosphérique. Cela
pourrait améliorer considérablement la connaissance de la situation dans l’≪ espace
de bataille ≫ en ce qui a trait au problème important de la détermination des carac-
téristiques d’une source inconnue résultant d’un essai nucléaire clandestin à la suite
de la détection de l’activité par le réseau du SSI des radionucléides.
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1 Introduction

The monitoring of noble gas radionuclides and, in particular, xenon radionuclides
(radioxenon) is an important component to ensure compliance with the Comprehen-
sive Nuclear-Test-Ban Treaty (CTBT) through the prompt detection of clandestine
nuclear testing (whether underground, underwater, or in the atmosphere). This is be-
cause radioxenon is by far the most abundant of the noble gas radionuclides released
during a nuclear detonation, making the monitoring and measurement of radioxenon
critically important for the verification or dismissal of a putative covert nuclear test
(especially for the case of an underground or underwater test where the presence of
particulate radionuclides is minimized).

One of the main challenges with radionuclide monitoring for CTBT verification con-
cerns the problem of source term estimation or reconstruction (viz., determination
of unknown source characteristics such as location, emission rate, and time of re-
lease following event detection). This problem is particularly acute for noble gas
monitoring for CTBT verification because xenon radionuclides can enter the atmo-
sphere from various other sources such as the normal operation of nuclear reactors
and the production and use of medical isotopes [1] which can create difficulties in the
interpretation of the measurement results for source attribution (viz., monitoring for
compliance with the CTBT).

Noble gas monitoring of radioxenon for Comprehensive Nuclear-Test-Ban Treaty pur-
poses was primarily envisioned for the detection of underground nuclear tests, but it
can also be applied to detect nuclear tests that occur in the atmosphere. The most
significant problem in noble gas monitoring is the discrimination of sources. Ow-
ing to the production of medical isotopes, an almost global radioxenon background
(composed principally of 133Xe, but other isomers such as 133mXe and 131mXe are also
important) is created that must be decoupled from any nuclear test signal of interest.
Medical isotope production has been demonstrated to perturb measurements that
occur thousands of kilometers distant from the production site [2]. Therefore, to per-
form an accurate analysis of the genesis time using nuclide ratios, some compensation
is required to account for these medical isotope emissions. The genesis time, corrected
for background, is extremely important for the source localization problem [1].

Currently, typical source term estimation approaches use backward Lagrangian par-
ticle transport and dispersion modeling in combination with re-analyzed global wind
fields to determine source-receptor sensitivity (SRS) fields (or, retro-plume concen-
tration fields) for each measurement [3]. The SRS fields provide information on the
sensitivity relationship between the emission rate at a given source space-time point
and the activity concentration measured at the receptor. The SRS fields can be used
to establish a field of regard (FOR) which is simply the geographical region that is
covered by the SRS fields for a particular activity concentration measurement over a
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fixed (prescribed) time interval preceding this measurement.

In the case of multiple (related) activity concentration measurements, a separate
FOR can be generated for each measurement and then combined to create a possi-
ble source region (PSR). There are two approaches that have been used to combine
multiple measurements together into a PSR to provide a common geo-temporal area
where the source may be located. Wotawa et al. [3] used a spatial-temporal correlation
distribution between the modeled sensitivity and the concentration measurements to
provide a measure (or, score) of how well a specified release at a given location and
time would be able to explain the behavior of the available measurements. Another
approach was proposed by Ringbom et al. [4] in which the separate FORs were su-
perimposed to create a PSR containing only the geographical area that is common to
all the individual FOR regions (viz., the common intersection between all the FORs).
This was the approach used in the analysis of the most recently announced Demo-
cratic People’s Republic of Korea nuclear test [4]. This geographically and temporally
consistent region is more restrictive in spatial-temporal extent than that obtained us-
ing the correlation distribution methodology as advocated by Wotawa et al. [3].

Further reductions in the geographical area associated with the PSR can be achieved
through the inclusion of additional information in the analysis. For example, the area
enclosing the putative source can be reduced by the utilization of the timing informa-
tion derived from nuclide activity ratios (if this is available), or by incorporating the
information regarding non-detections from the monitoring network into the analysis
process. The ideal information for source localization would be the measurement of
an unambiguous seismic signal. However, even here, problems can arise when the
received seismic signals are near the discrimination threshold, as then it becomes in-
creasingly difficult to separate natural seismic events from potential explosive (nuclear
test) events. Furthermore, it should be noted that while a seismic signal may pro-
vide evidence that an event has occurred, only the detection of radioxenon (or other
by-products released by a nuclear detonation) can provide the definitive verification
that the putative event was the result of a nuclear explosion.

The methods that have been used for source term reconstruction involving the ma-
nipulation of the source-receptor sensitivity field(s) to provide either a FOR or a PSR
are deterministic in nature in the sense that they select a single source distribution
from the entire ensemble of acceptable distributions that are consistent with the finite
number of noisy activity concentration data provided by the sensor network. As such,
the source term estimation using these methodologies does not provide information
on the reliability (or, equivalently, uncertainty) of the solution. This report focuses
on the application of a novel approach for source term estimation which is based on
a probabilistic approach using a Bayesian inferential scheme that allows the uncer-
tainty in the inference of the source characteristics to be rigorously quantified. More
specifically, this proposed alternative to the existing approaches described above in-
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volves the characterization of an ensemble of source distributions using the Bayesian
statistical paradigm (providing a fully probabilistic solution allowing the uncertainty
in the source reconstruction to be rigorously assessed). In this report, we provide an
argument of why it is necessary to apply Bayesian probability theory and a detailed
description on how we should use it for source reconstruction.

The Bayesian inferential methodology for source reconstruction provides fully prob-
abilistic information on all the parameters used to describe the unknown source dis-
tribution. The probabilistic approach using a Bayesian inferential scheme for source
reconstruction has been developed (in other source reconstruction contexts). The
methodology was utilized by Yee [5] and demonstrated initially using Project Prairie
Grass data for short-range dispersion over open and level terrain. The Bayesian in-
ferential scheme for source term reconstruction was further developed, refined and
generalized in subsequent work which included (1) application of the methodology to
complex environments (including dispersion in urban environments) by Yee [6], Keats
et al. [7] and Chow et al. [8]; (2) generalization of the methodology to deal with a non-
conservative scalar by Keats et al. [9]; (3) Bayesian experimental design for receptor
placement in order to maximize the expected information in the measured concen-
tration data for improving estimates of the source location and emission rate [10]; (4)
application of the methodology to source reconstruction for long-range dispersion on
continental scales by Yee et al. [11]; and, (5) reconstruction of multiple sources when
the number of sources is unknown a priori was addressed by Yee [12, 13, 14] and by
Yee and Flesch [15] as a generalized parameter estimation problem and by Yee [16] as
a model selection problem.

Most of the applications of the Bayesian inferential methodology for source recon-
struction have used high-quality concentration data from well-designed atmospheric
transport and dispersion experiments to validate the schema. The objective of this
report is to use activity concentration data (synthetic and real) obtained from an op-
erational network of sensors (more specifically, from a very small subset of the global
network of radionuclide sensors that form part of the International Monitoring Sys-
tem deployed under the auspices of the Comprehensive Nuclear-Test-Ban Treaty [17])
to provide a real-world test of source reconstruction based on the Bayesian statisti-
cal paradigm applied to long-range atmospheric transport on a continental or hemi-
spheric scale. A preliminary description of the application of Bayesian inference to
source reconstruction using measurements obtained from some radionuclide sensors
of the International Monitoring System has been reported recently by Yee et al. [18].
In this report, we will give a much more comprehensive and detailed description of
the application of Bayesian inference to real-world applications for source term re-
construction involving activity concentration data obtained from the International
Monitoring System. The purpose is to provide the reader with a review summariz-
ing the general ideas of Bayesian inference as applied to source reconstruction along
with an overview of numerical techniques that are useful for Bayesian analysis and to
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illustrate the application of these ideas and numerical techniques using two relevant
case studies.

It will be demonstrated that one of the key problems that needs to be properly ad-
dressed for the successful application of Bayesian inference for source reconstruction
when using operational concentration data obtained from the International Monitor-
ing System is the ‘correct’ specification of the expected model errors arising from
the putative accuracy of a long-range forecast (or, alternatively re-analysis) of mete-
orological fields and the concomitant prediction of material dispersion based on this
forecast or re-analysis (which can result in significant model errors with a complex
structure in the predicted concentrations required for the source inversion). Other
problems include the fact that the likelihood function in the current source recon-
struction problem is an open-form expression whose evaluation is extremely computer
intensive. Owing to the fact that simulation-based posterior inference requires that
a large number of forward calculations of the source-receptor relationship be under-
taken, it is evident that a fast and efficient sampling technique will be needed for
the posterior inference. This report describes the methodology for provision of a fast
and reliable framework for Bayesian inference in the context of source reconstruction
(and, more particularly, in relation to source term estimation problems associated
with activity concentration measurements by the radionuclide part of the Interna-
tional Monitoring System that has been set up for verification of the CTBT).

2 Bayesian inference in a nutshell

In a seminal paper, Cox [19] demonstrated that any acceptable calculus of plausible
inference must be consistent with a set of three elementary desiderata that conform
to the obvious basic properties of inference. This theory can be interpreted as the

extension of Aristotelian deductive logic to cases where there is uncertainty, and is
based on three basic desiderata: namely, (1) degrees of plausibility are represented
by real numbers; (2) the measure of plausibility must exhibit a qualitative agreement
with rationality (common sense); and, (3) internal consistency in the sense that if
a conclusion can reasoned out in two or more ways, every possible way leads to the
same result.

Cox [19] demonstrated that the three desiderata enumerated above are sufficient to
determine a quantitative theory of inference in which the rules for manipulating
plausibility p reduce simply to the following sum and product rules; namely, the sum
rule

p(H|I) + p(H|I) = 1, (1)

and the product rule

p(H, D|I) = p(H|I)p(D|H, I) = p(D|I)p(H|D, I). (2)
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In Eqs. (1) and (2), H , D, and I are arbitrary propositions (hypotheses) and p(H|I)
is a measure of the degree to which the hypothesis H is supported by the information
embodied in the proposition I, “|” denotes “conditional upon”, H denotes “not H”,
and H, D denotes “H and D”. Furthermore, it is important to note that the rules em-
bodied in Eqs. (1) and (2) are the ordinary rules of probability calculus. Indeed, Cox
demonstrated that every allowed plausibility theory for quantitative inference must
be mathematically equivalent (isomorphic) to probability theory, or else inconsistent
(in the sense that no other calculus consistent with the above-mentioned desiderata
is admissible for inference). A detailed and clear description of the quantitative the-
ory of plausible inference (probability theory as extended logic) has been given by
Jaynes [20] in his definitive treatise.

In many cases, the hypothesis H concerns the values of a combination of model
parameters denoted by θ (parameter vector) which we would like to assess in the
light of some observed data D ≡ d (data vector) and any background information I.
More specifically, we are interested in calculating the probability of the hypothesis
H ≡ θ, given the data D ≡ d and any prior information I we may have regarding
the hypothesis and data. The key in the evaluation of this conditional probability is
the product rule of probability calculus [see Eq. (2)] which, in terms of the context
described here, can be expressed as follows:

p(θ|I)p(d|θ, I) = p(d|I)p(θ|d, I). (3)

Equation (3) is the fundamental relationship of Bayesian probability theory (in which
probability is interpreted as the degree of belief about a proposition or hypothesis).
More specifically, this equation is the expression of Bayes’ theorem which describes a
type of learning: how must the probability of a hypothesis concerning θ be updated
in the presence of the new information embodied in the observed data d. Finally, as
emphasized by Jaynes [20], in Bayesian probability theory it is the probability that
is distributed and not the parameter vector θ. Our incomplete knowledge about θ

is expressed by spreading our belief regarding the true value of the parameter vector
among various hypotheses in accordance to the posterior distribution (see below).

The input quantities for Bayesian inference are on the left-hand-side of Eq. (3) and
are as follows: p(θ|I) is the prior probability for a hypothesis about the values of
the parameter vector θ which encodes our state of knowledge about these parameters
before the receipt of the data d; and, p(d|θ, I) is the likelihood function and is
considered to be a function of θ for fixed data d. The likelihood function incorporates
the information provided by the measured data d into the inferential scheme.

The output quantities provided by the Bayesian inference are on the right-hand side
of Eq. (3) and are as follows: p(d|I) is referred to as the evidence or global likelihood
and p(θ|d, I) is the posterior probability for the hypothesis about the values of the
parameter vector θ, evaluated in light of the additional information provided by the
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measured data d. In the context of the determination of the plausible values for the
parameter vector (parameter estimation problem), the evidence is simply a normal-
ization constant that is independent of the parameter vector and, as a consequence,
can therefore be ignored. More specifically, within the context of a parameter esti-
mation problem, the evidence is a constant given by the following multi-dimensional
integral over the parameter space [cf. Eq. (3)]:

Z ≡ p(d|I) =
∫

p(θ|I)p(d|θ, I) dθ, (4)

which ensures the proper normalization of the posterior distribution p(θ|d, I) (viz.,
the condition that the integral of the posterior distribution over its domain of defi-
nition is unity). However, it should be stressed that the evidence assumes a central
role in the problem of model selection [20] and in this context this quantity cannot
be ignored as in the parameter estimation problem considered in this report.

In summary, in Bayesian inference we need to consider both parameters θ and data d

as well as a model M that relates the parameters to the data, all within an overarching
context I (contextual or background information available in the problem). The joint
probability distribution of the parameters θ and the data d factorizes, in accordance
to the product rule of Eq. (2), in two different ways as summarized by Bayes’ rule
given in Eq. (3). On the left-hand-side of this rule are the two inputs: the prior
distribution for θ and the likelihood function representing the probability distribution
of the data d for a given value of θ. On the right-hand-size of this rule are the two
outputs: the posterior distribution of θ representing our inference for the parameters
after incorporating the information embodied in d and the evidence which is the
probability with which one would predict d given only prior information about the
model M (implicit in the background information I).

The transformation from the prior distribution to the posterior distribution for θ is
mediated through the factor p(d|θ, I)/p(d|I) (corresponding to a learning process).
The quantitative measure of the gain in information content (concerning the param-
eters θ) obtained from the receipt of the data d is the information gain (or negative
entropy) defined as the “difference” between the prior and the posterior as follows:

S =
∫

p(θ|d, I) log

(

p(θ|d, I)

p(θ|I)

)

dθ. (5)

The information gain (also known in statistics as the Kullback-Leibler divergence [21])
can be interpreted as the logarithm of the volumetric factor by which the prior has
been compressed to become the posterior (the greater this compression, the greater
is the information gain provided by the data d). In simpler terms, S is the amount
of information or “surprise” contained in the data d. Note that the update in our
state of knowledge from the prior to the posterior distribution (learning process) is
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obtained through the modulation of the prior by the ratio of the likelihood function
and the evidence (p(d|θ, I)/p(d|I)) and that this same ratio is involved in the mea-
sure of the information gain S achieved in this learning process (since S involves
p(θ|d, I)/p(θ|I) = p(d|θ, I)/p(d|I) by Bayes’ rule).

3 Assignment of the direct probabilities

In view of the fact that p(d|I) is merely a normalization constant in the context of the
parameter estimation problem, the key output of the Bayesian inference methodology
in this case is the posterior probability p(θ|d, I) which embodies all the information
about the unknown source parameters θ. To determine this quantity requires assign-
ing appropriate functional forms for the two input quantities for Bayesian inference;
namely, the prior probability p(d|I) and the likelihood function p(d|θ, I). The as-
signment of numerical values for these two probabilities in the context of the source
estimation problem defines the “vocabulary” (or “what is”) for the rational inference
[with the “grammar” (or “how to”) for the rational inference determined by the two
rules for combining probabilities embodied by Eqs. (1) and (2)]. In this sense, the
two input probabilities in Eq. (3) that need to be assigned directly are the direct

probabilities for the problem.

3.1 Assignment of likelihood – input

In this report, we focus on the source reconstruction problem: namely, the character-
ization of the properties of an unknown source following event detection by a network
of concentration sensors. The model equation for this problem is given by

dJ ≡ d(xJ , tJ)

= C̄(θ; xJ , tJ) + e(xJ , tJ)

≡ C̄J(θ) + eJ , (6)

J = 1, 2, . . . , N where N is the total number of measured concentration data. In
Eq. (6), the concentration data acquired or measured (by a sensor) at the space-time
point (xJ , tJ) is represented by d(xJ , tJ) and the associated model prediction for the
concentration data is given by C̄(θ; xJ , tJ). As applied to the problem of source re-
construction, θ is identified with the set of parameters used to characterize the source
distribution (e.g., location, emission rate); d is associated with the measured concen-
tration data, so d ≡ (d1, d2, . . . , dN); and, I corresponds to any contextual informa-
tion that defines the source reconstruction problem (e.g., background meteorology,
atmospheric dispersion model M used to define the source-receptor relationship).

The error (discrepancy) between the measured concentration dJ and the predicted
concentration C̄J(θ) is represented symbolically in Eq. (6) by eJ . In the problem
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considered in this paper, the data dJ can differ from the model C̄J(θ) because of two
major contributions to the error eJ : namely, the observation or instrument error in
the measured concentration dJ arising from the noise inherent in the sensor and the
model error in the determination of the predicted concentration C̄J(θ). Of these two
errors, the model error is by far the most dominant contribution to the total error eJ

and is also the most difficult to characterize.

In our current application, the model error arises from three primary sources. These
are as follows:

1. uncertainties in the representation of various physical processes in the dispersion
model;

2. uncertainties in the input meteorological fields (initial and boundary conditions)
used to “drive” the dispersion model (either numerical weather prediction un-
certainties if these fields are obtained as a forecast, or data assimilation uncer-
tainties for the state of the atmosphere if these fields are obtained through a
re-analysis); and,

3. uncertainties in the numerical solution of the model equations that characterize
the dispersion model (which include both discretization errors and statistical
model errors, the latter of which arises from using necessarily a finite number
of “marked” fluid particles to estimate the mean concentration field in the case
of a Lagrangian stochastic model of dispersion).

As a consequence of the complexity in structure of the error eJ [cf. Eq. (6)] for our
current application, it is extremely difficult (if not insuperable) to specify a priori

an exact value σJ for the standard deviation of eJ (J = 1, 2, . . . , N). If the standard
deviation σJ of eJ was exactly known, then it can be shown by application of the
principle of maximum entropy that a Gaussian distribution of the form

p(d|θ, I) =
1

∏N
J=1

√
2πσJ

exp
(

−1

2
χ2(θ)

)

(7)

with

χ2(θ) ≡
N
∑

J=1

(

dJ − C̄J(θ)

σJ

)2

(8)

would be the most conservative choice for the direct probability (or likelihood) of the
concentration data d (see Jaynes [20]). Indeed, assigning a Gaussian distribution for
the noise eJ using the principle of maximum entropy makes no statement about the
true (unknown) sampling distribution of the noise. Rather, it simply represents a
maximally uninformative state of knowledge, a state of knowledge the reflects what
the observer knows about the true noise in the data (namely, the mean and variance
of the noise, with all other properties of the noise being irrelevant to the inference
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since these are unknown to the observer). Finally, it should be emphasized that the
standard deviations {σJ , J = 1, 2, . . . , N} (which are taken in Eqs. (7) and (8) to be
known) are not assumed to be equal for each data point (modeled and measured),
so the model is heteroscedastic (meaning that the squared errors (dJ − C̄J(θ))2 have
different expected values σ2

J ).

However, in our current application, we do not know the true or actual standard
deviation (or, equivalently variance) of the noise. Because σJ is not known a priori,
it is useful to characterize the uncertainty in the specification of σJ with a probability
distribution. Following Yee [16], we will choose this probability distribution to be an
inverse gamma distribution with the following form:

ϕ(σJ |sJ , α, β) = 2
αβ

Γ(β)

(

sJ

σJ

)2β

exp

(

−α
s2

J

σ2
J

)

1

σJ
, J = 1, 2, . . . , N. (9)

Here, Γ(x) denotes the gamma function, α and β are scale and shape parameters of
the inverse gamma distribution, and sJ is the quoted (nominal) estimate for the true
but unknown standard deviation σJ . The values for the hyperparameters α and β
are chosen as α = π−1 and β = 1 following the rationale described in Yee [16].

The likelihood function in Eqs. (7) and (8) depends on the error standard devia-
tions σJ (J = 1, 2, . . . , N) which are generally unknown. To remove these unwanted
parameters (nuisance parameters), we can multiply the likelihood given in Eq. (7)
by the (assigned) probability distribution for each of the error standard deviations
embodied in Eq. (9) and integrate the result with respect to the unwanted parame-
ters (error standard deviations) to given an integrated likelihood function with the
following form [16]:

p(d|θ, s, α, β) =
∫

p(d|θ, I)
N
∏

J=1

ϕ(σJ |sJ , α, β) dσ

=
N
∏

J=1

αβΓ(β + 1/2)√
2πsJΓ(β)

[

α +
(

dJ − C̄J(θ)
)2/

(2s2
J)
]−β−1/2

. (10)

In Eq. (10), s ≡ (s1, s2, . . . , sN) is the vector of estimated (quoted) standard devi-
ations for the error eJ (J = 1, 2, . . . , N) and dσ ≡ dσ1dσ2 . . . dσN . The process of
integrating out the nuisance parameters in Eq. (10) is called marginalization, which
provides the general recipe for the elimination of unwanted nuisance variables from
a Bayesian calculation. This represents simply the application of the sum rule of
probability theory.

To be more specific with respect to the source parameter vector θ, a source distribu-
tion S with the following general form is considered in this paper:

S(x, t) =
Ns
∑

k=1

Qs,kI[tk−1,tk)(t)δ(x − xs), (11)
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where δ(x) is the Dirac delta function and IA(x) denotes the indicator function
for set A defined as IA(x) = 1 if x ∈ A and IA(x) = 0 if x /∈ A. In Eq. (11),
Qs,k is the (constant) source emission rate over the time interval [tk−1, tk) (k =
1, 2, . . . , Ns) with ti < tj for i < j. It is assumed that temporal change-point po-
sitions {tj , j = 0, 1, . . . , Ns} that define the constant emission rate sections are fixed
and known. Equation (11) describes a (continuous) point source located at the vec-
tor position xs whose emission rate temporal profile is described by a piecewise con-
stant function characterized by {Qs,k, k = 1, 2, . . . , Ns}. The parameters describing
this source distribution can be assembled into a source parameter vector given by
θ ≡ (xs, Qs,1, Qs,2, . . . , Qs,Ns

) ∈ R
3+Ns .

3.2 Assignment of prior – input

To assign the prior probability for the source parameters θ, it is necessary to state
explicitly what is known about these parameters. Firstly, it is assumed that the source
parameters are logically independent with the result that the prior distribution p(θ|I)
is given by the product of the individual prior distributions:

p(θ|I) = p(xs|I)
Ns
∏

k=1

p(Qs,k|I). (12)

Secondly, the source location and emission rates are known a priori to be bounded.
In particular, it is assumed that the location xs of the source is contained in some
spatial region D ⊂ R

3. Furthermore, the emission rate Qs,k is assumed to be bounded
by Qmin < Qs,k < Qmax (k = 1, 2, . . . , Ns) where Qmin and Qmax are the lower and
upper bounds for each emission rate, respectively. Different lower and upper bounds
can be chosen for each emission rate Qs,k in the assignment of the prior distribution
for this quantity, but for the formulation herein we simply use a common lower and
upper bound for all emission rates (with effectively no loss in generality).

Finally, if nothing else is known about the various source parameters except for their
lower and upper bounds, then application of the principle of maximum entropy to
our state of knowledge concerning the source parameters, results in the assignment
of a uniform prior distribution for these parameters, so

p(θ|I) ∝ ID(xs)
Ns
∏

k=1

I(Qmin,Qmax)(Qs,k). (13)

3.3 Posterior distribution – output

Combining Eqs. (10) and (13) with reference to Bayes’ rule given by Eq. (3), yields
the key output of the Bayesian inference; namely, the posterior distribution p(θ|d, I)
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which for our current application assumes the following form:

p(θ|d, s, α, β, I) ∝ ID(xs)
Ns
∏

k=1

I(Qmin,Qmax)(Qs,k) ×

N
∏

J=1

αβΓ(β + 1/2)√
2πsJΓ(β)

[

α +
(

dJ − C̄J(θ)
)2/

(2s2
J)
]−β−1/2

. (14)

Note that the quantities s, α and β have been added explicitly to the posterior
probability of the source parameters θ in Eq. (14) to indicate that these quantities
are known (viz., they are provided a priori by the user, in addition to the measured
concentration data d).

The posterior distribution given by Eq. (14) provides the full solution for the source
reconstruction (or source term estimation) problem. Inferences on the values of the
source parameters are based on this posterior distribution. Indeed, it is useful to
summarize the posterior distribution in terms of a few relevant quantities. One rele-
vant quantity is the posterior mean of the various source parameters (e.g., location,
emission rates) given by

〈θj〉 = E

[

θj |d, s, α, β, I
]

≡
∫

θjp(θ|d, s, α, β, I) dθ, (15)

where θj is the j-th component of θ and E[ · ] denotes mathematical expectation.
A measure of the uncertainty of this estimate (posterior mean) for θj is given the
posterior standard deviation

σ
(

θj

)

=
(

E

[

(θj − 〈θj〉)2|d, s, α, β, I
])1/2

=
(
∫

(θj − 〈θj〉)2p(θ|d, s, α, β, I) dθ

)1/2

. (16)

Alternatively, a 100r% [r ∈ (0, 1)] credible or highest posterior distribution (HPD)
region for θ can be used as a measure of the uncertainty in the determination of the
source parameter vector. The 100r% HPD region is defined in terms of that portion
R of the source parameter space such that

∫

R
p(θ|d, s, α, β, I) dθ = r, (17)

with the posterior density within R everywhere larger than outside it. This enables
one to state that the probability that θ lies within R, given the observed data d and
background information I, is at least 100r%.
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4 Bayesian computation

There are two computational problems that need to be addressed before the Bayesian
inferential methodology for source reconstruction can be applied to practical real-
world applications; namely, (1) Bayesian inversion of concentration data requires a
fast and efficient technique for the determination of the source-receptor relationship
(viz., for the rapid computation of C̄J(θ) for a given hypothesis about the source
parameters θ); and, (2) methodology for the efficient sampling of the posterior dis-
tribution p(θ|d, s, α, β, I). We will address each of these computational problems in
turn.

4.1 Rapid computation of model concentration

The Bayesian inferential methodology for source term estimation is highly computer
intensive because the simulation-based inference procedure requires a large number
of calculations of the mean concentration C̄J(θ) (J = 1, 2, . . . , N) to be determined.
These calculations for the mean concentration need to be executed for a large number
of source parameter hypotheses θ required for the complete exploration of the pos-
terior distribution p(θ|d, s, α, β, I) (see below). As a consequence, for the Bayesian
inversion of concentration data to be practical, fast and efficient techniques are re-
quired for the determination of the source-receptor relationship within the context
of sampling in the hypothesis space of the source parameters required for posterior
inference.

For the current application, it is possible to construct an emulator for the (concen-
tration) simulation model and use this emulator as a computationally inexpensive
surrogate to replace the forward (source-oriented) atmospheric dispersion model used
normally to determine the source-receptor relationship [22]. However, applying this
type of approximation is not required for the current problem. It was shown by Keats
et al. [7] and Yee et al. [11] that an exact computationally efficient procedure (appro-
priate for use in a Bayesian inference scheme) exists in the form of a receptor-oriented
scheme for the representation of the source-receptor relationship.

Using a standard forward atmospheric dispersion model (say, a forward Lagrangian
stochastic (LS) model) the predicted concentration C̄J(θ) “seen” by a sensor can be
computed by averaging the mean concentration C(x, t) obtained from the forward
model over the sensor volume and sampling time to give

C̄J(θ) ≡ C̄(θ; xJ , tJ)

=
∫ tJ

−∞
dt
∫

D
dxC(x, t)h(x, t|xJ , tJ) ≡ 〈C|h〉(xJ , tJ), (18)

where h(x, t|xJ , tJ) is the spatial-temporal filtering function for the sensor concentra-
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tion measurement at (xJ , tJ) and D×(−∞, tJ ) corresponds to the space-time volume
that contains the source distribution and the sensors (receptors). Note that the con-
centration C̄J(θ) “seen” by a sensor can be expressed as the inner product 〈C|h〉
of the mean concentration C and the sensor response function h. Alternatively, it
should be noted that with the source distribution S given by Eq. (11), the predicted
concentration at a receptor location xJ and time tJ can also be determined from the
following dual relationship once the adjunct (or dual) concentration field C∗ has been
computed for this location and time:

C̄J(θ) =
∫ tJ

−∞
dt′
∫

D
dx′C∗(x′, t′|xJ , tJ)S(x′, t′)

≡ 〈C∗|S〉(xJ , tJ) = 〈C|h〉(xJ , tJ), (19)

where C∗(x′, t′|xJ , tJ) is the adjunct concentration at space-time point (x′, t′) asso-
ciated with the sensor concentration datum measured at location xJ and time tJ .

It is noted that the predicted mean concentration C̄J(θ) “seen” by a sensor for a
given hypothesis about the source parameters θ can be rapidly computed by simply
evaluating the inner (or scalar) product 〈C∗|S〉 of the adjunct concentration C∗ and
the source distribution S corresponding to the given hypothesis. In other words, the
predicted concentration C̄J is obtained from a mathematical model (say, a backward
Lagrangian stochastic model for dispersion) by evaluation of the bounded linear func-
tionals C̄J = 〈C∗

J |S〉 for J = 1, 2, . . . , N where C∗
J denotes the adjunct concentration

field obtained at the sensor space-time point (xJ , tJ) and where S corresponds to
a given hypothesis about the source. In applied mathematics, the elements C∗

J are
referred to usually as representers. More specifically, if we substitute Eq. (11) into
Eq. (19), the model (predicted) concentration C̄J(θ) “seen” by the sensor at location
xJ and time tJ is given explicitly by

C̄J(θ) =
Ns
∑

k=1

Qs,k

∫ min(tJ ,tk)

tk−1

C∗(xs, t′|xJ , tJ) dt′. (20)

For the application reported herein, a backward Lagrangian stochastic model for
long-range transport was used to determine the adjunct concentration field C∗ over
the northern hemisphere. The backward LS model employed here is an operational
model used by the Canadian Meteorological Centre to support both Canadian Treaty
monitoring and the various mandates of the Provisional Technical Secretariat of the
Comprehensive Nuclear-Test-Ban Treaty Organization, including event analysis by
member states. The backward LS model for the determination of C∗ was “driven”
by re-analyzed meteorological fields that were obtained at a relatively low temporal
and spatial resolution; namely, at a temporal resolution of 6 h (rate of the data
assimilation) with a core spatial resolution of 0.5◦ on a geographical latitude and
longitude coordinate system. The backward LS model was run retrospectively using
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these re-analyzed meteorological fields, providing C∗ fields with a temporal resolution
of 3 h over a period of 14 d prior to the commencement of the sampling for a particular
activity concentration measurement.

4.2 Markov chain Monte Carlo

An examination of Eq. (14) shows that the posterior distribution is highly nonlinear
in the source parameters and explicit evaluations of Eqs. (15), (16) and (17) (and sim-
ilar multi-dimensional integrals required for a full Bayesian computation of desired
marginal posteriors and various Bayesian statistics) are impossible. In view of this
insuperable difficulty, we apply posterior sampling for the evaluation of these integrals
which is implemented using a Markov chain Monte Carlo (MCMC) algorithm (see
Gilks et al. [23] and Gelman et al. [24]). A MCMC algorithm will be used to generate
samples of source distribution models (characterized by θ) from the posterior distri-
bution given by Eq. (14). In other words, the objective here is to find an ensemble of
source distribution models that preferentially sample the high plausibility regions of
the source parameter space (as determined by the posterior distribution of θ), rather
than seek a single optimal model. Towards this objective, a Markov chain {θ(t)} is
constructed whose stationary (or invariant) distribution is the posterior distribution
p(θ|d, s, α, β, I) of the parameters θ.

All quantities of interest, such as the posterior means and standard deviations of the
various source parameters and the various marginal posterior distributions, can be
estimated by sample path averages of the Markov process {θ(t)}. In general, MCMC
algorithms are used to generate the required Markov process {θ(t)}. The Metropolis-
Hastings (M-H) algorithm [23] forms the underlying basis for MCMC sampling and it
is perhaps not too surprising that the M-H algorithm has become almost synonymous
with MCMC sampling. Indeed, most of the algorithms for MCMC sampling reported
in the literature [23, 24] can be interpreted as either special cases or extensions of the
basic M-H algorithm. The M-H algorithm generates the required samples (ensemble of
source models) by constructing a kind of random walk in the source parameter space
so that the probability of being in a particular region of this space is proportional to
the posterior probability mass for that region.

The basic M-H algorithm for generating this random walk consists of two components:
(1) a proposal distribution q(θ′|θ); and, (2) an acceptance probability α(θ, θ′). These
two components determine the two steps of the algorithm. Firstly, given a chain in
the current state θ(t) = θ at time (iteration) t, a proposed new state θ′ is drawn from
the proposal distribution q(θ′|θ). Secondly, this new point is accepted or rejected
as the new state of the chain at time (t + 1) using the standard M-H acceptance

14 DRDC-RDDC-2014-R71



probability [23] given by

α(θ, θ′) = min

{

1,
p(θ′|d, s, α, β, I)q(θ|θ′)

p(θ|d, s, α, β, I)q(θ′|θ)

}

. (21)

If the proposal is accepted, then θ(t+1) = θ′; otherwise, θ(t+1) = θ. The construction
of the M-H algorithm ensures that the condition of detailed balance holds, implying
that the M-H algorithm converges to a stationary distribution which corresponds to
the target distribution (p(θ|d, s, α, β, I)) that we are trying to draw samples from.

The simple M-H algorithm summarized above is subject to various difficulties if the
target probability distribution is multi-modal or possesses significant curving degen-
eracies in the (possibly) high-dimensional parameter space. To overcome these diffi-
culties, a number of approaches has been proposed to increase the sampling efficiency
of MCMC simulation based on the M-H algorithm. In the current study, two differ-
ent approaches for improving the posterior exploration of source distribution models
(allowing the parameter space to be explored more freely than in the standard M-H
algorithm) have been used.

4.2.1 Differential evolution adaptive Metropolis sampling

One of the MCMC algorithms used for the current study is a multiple-try differential
evolution adaptive Metropolis algorithm with sampling from an archive of past states
(MT-DREAM(ZS)). The details of this MCMC sampling algorithm are described
by Laloy and Vrugt [25], but for completeness we will briefly summarize the main
components of this algorithm. In particular, only the relevant details of the algorithm
that are required for the interpretation of the results in this paper are emphasized.

Firstly, MT-DREAM(ZS) samples from an archive of past states Z to generate the
candidate points (proposals) for each of the individual Markov chains that are used
to explore the target posterior distribution. The archive of past states is initialized by
drawing M0 samples of θ from the prior distribution p(θ|I) [see Eq. (13)]. The states
of the individual Markov chains at various times (iterations) are periodically stored
in the archive Z using a simple thinning rule (e.g., after every K ≥ 1 iterations, the
states from the individual Markov chains are added to the archive Z).

Secondly, as already alluded to here, the algorithm utilizes multiple (different) Markov
chains that are run simultaneously in parallel. These multiple chains employ a self-
adaptive randomized subspace sampling of difference vectors from the archive Z of
past states to generate new candidate points in these chains. More specifically, if
Markov chain i is in the current state θ

(t)
i ≡ θi, a proposed candidate state θ′

i is
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generated in accordance to the following prescription:

θ′
i = θi +

(

1Np
+ eNp

)

γ(δ, N ′
p)





δ
∑

j=1

Zr1(j) −
δ
∑

n=1

Zr2(n)



+ ǫNp
, (22)

for i = 1, 2, . . . , Nc. Here, Nc and Np are the number of Markov chains and the
dimensionality of the parameter vector θi, respectively; Zk (k ∈ N) denotes the k-
th state vector stored in the archive Z; r1(j) and r2(n) are random integers drawn
from the set {1, 2, . . . , M} where M is the number of samples in the archive with
r1(j) /= r2(n) (j, n = 1, 2, . . . , δ and δ is the dimension of the randomized subspace);
1Np

is a vector of dimension Np consisting of ones; eNp
and ǫNp

are random vectors
of dimension Np whose components are drawn from U(−b, b) (uniform distribution)
and N(0, b∗) (standard normal distribution), respectively, where b and b∗ are small
compared to the “width” of the target distribution; and, γ is the size of the update
step whose value depends on δ and N ′

p (N ′
p is the number of dimensions of θi that is

updated using the binomial scheme described below). An appropriate choice for γ is
given in [25].

Thirdly, as part of the randomized subspace sampling strategy, each element of the
candidate points for the parallel proposals is updated (accepted) in accordance to
a binomial scheme (Bernoulli trial) with a crossover probability ps, otherwise the
proposed element retains its previous (old) value. This multiple-chain approach au-
tomatically adjusts or adapts the scale and orientation of the proposal function. In
addition to the randomized subspace update given in Eq. (22), the MT-DREAM(ZS)

algorithm also employs a snooker step update of the state with an adaptive step size.
This update is included with a fixed (albeit small) probability in order to improve
the mixing efficiency of the algorithm for exploration of the hypothesis space.

Fourthly, to further improve the efficiency of the sampling, MT-DREAM(ZS) incorpo-
rates a multiple-try Metropolis (MTM) approach proposed initially by Liu et al. [26].
The basic idea underpinning the MTM approach is as follows: longer range candidate
moves are rarely accepted, but if multiple points are proposed for these longer range
moves then the acceptance probability will be increased. The MTM algorithm is ap-
plied individually to each of the different Markov chains used in the MT-DREAM(ZS),
involving generating l draws using the randomized subspace sampling procedure for
each chain [see Eq. (22)], choosing one of these draws (proposals) as the reference
point, and generating a new set of (K − 1) draws with respect to this reference point
using the randomized subspace sampling strategy. The acceptance rule is simply the
Metropolis-Hasting acceptance probability [see Eq. (21)] applied to the sequence of
proposals that comprise the MTM schema.

Finally, to determine if the multiple Markov chains used in MT-DREAM(ZS) have
achieved stationarity (viz., have converged to the stationary distribution associated
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with the chains), the Gelman and Rubin [27] convergence diagnostic R̂ is computed
for each dimension of each chain using the last 50% of the samples of the chain. This
simple and popular convergence diagnostic determines whether a chain has achieved
stationarity by comparing the variance within each chain and the variance between
chains (interchain variance).

4.2.2 Nested sampling

Nested sampling is an innovative Monte Carlo methodology developed by Skilling [28]
for general Bayesian computation. The nested sampling algorithm focuses on the
computation of the evidence integral [see Eq. (4)]. The basic idea is to transform
this multi-dimensional integral over the source parameter space into a simple one-
dimensional integral given by

Z ≡ p(d|I) =
∫ 1

0
L(χ) dχ, (23)

where L(χ∗) is the value of the likelihood function such that the volume in the
parameter space enclosed by the prior p(θ|I) satisfying p(d|θ, I) ≥ L(χ∗) ≡ L∗ is χ∗.
More specifically,

χ∗ = χ(L∗) =
∫

p(d|θ,I)>L∗

p(θ|I) dθ, (24)

is the prior mass in the parameter (hypothesis) space enclosed with a likelihood
greater than L∗ and L(χ) is the inverse which labels the likelihood contour that
encloses a prior mass χ. In other words, we label each element of prior mass dχ(θ) =
p(θ|I)dθ, and Eq. (23) represents only a change in notation for the evidence integral.

With the change of variables used in Equation (23), the evidence integral is a one-
dimensional integral which is conceptually easy to approximate numerically. In par-
ticular, if we can evaluate the likelihood function values L(χ) at a sequence of m
points χi (i = 1, 2, . . . , m) ordered such that 0 < χm < χm−1 < · · · < χ2 < χ1 < 1
with L(χi) > L(χj) (i > j) [since L is necessarily a monotonically decreasing function
of χ], the evidence Z can be approximated from the likelihood-ordered samples using
the following quadrature rule:

Ẑ =
m
∑

i=1

L(χi)wi, wi =
(

χi−1 − χi

)

, (25)

where the quadrature weights given here correspond to the simple (naïve) rectangle
rule. Indeed, a perusal of Eqs. (23) and (24) reveals that χ can be interpreted
as the cumulative distribution function of the prior distribution corresponding to a
particular ordering of values of the likelihood function.

The nested sampling algorithm provides a set of points {θi, Li} (Li ≡ L(χi)) and
a probability distribution over the corresponding set of prior masses {χi} associated
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with these points. If the prior mass points χi are sampled in a logarithmic manner as
χi =

∏i
j=1 tj where tj ∈ (0, 1) is a shrinkage ratio, then the nested sampling algorithm

consists of the following steps. The reader is referred to Skilling [28] for further details
of the algorithm:

1. Initialization: i = 0, χ0 = 1, Z0 = 0, and f = 0.5;

2. Draw M samples (“live” points) θ from prior distribution p(θ|I);

3. Evaluate likelihood function p(d|θ, I) for each of these “live” points;

4. i → i + 1;

5. Select sample with lowest likelihood (labeled as Li) and remove (discard) it;

6. Shrink the prior mass as follows: χi = χi−1 exp(−1/M);

7. Draw a new sample θ from prior p(θ|I) subject to p(d|θ, I) > Li and add this
sample to the “live” points;

8. Increment the evidence: Zi = Zi−1 + Li

(

χi−1 − χi

)

;

9. Convergence test: if Lmaxχi < fZi, go to Step 10; else, go to Step 4;

10. Evaluate contribution to Zi from remaining M “live” points; stop.

In Step 1 (initialization), f is a preset fraction that is used as the stopping criterion
for the nested sampling algorithm. In Step 9 (convergence test), Lmax is the largest
value of the likelihood in the set of “live” points. Note in Step 5 that the first sample
discarded θ(1) corresponds to that sample with the smallest value of the likelihood
function from the initial M draws, associated as such to the sample with the largest
value of χ. For this parameter to be at χ1, the remaining (M − 1) sample points
must have χ < χ1 implying that p(χ1|M) = M(χ1)M−1. This is a standard result
from order statistics [29]. It can be shown [28] that the joint distribution over the
entire sequence of prior masses sampled using the recursive procedure of the nested
sampling algorithm is given by

p(χ) = Mm(χ1)
M−1

m
∏

i=2

(χi)
M−1

(χi−1)M
, (26)

where χ ≡ (χ1, χ2, . . . , χm).

In Step 10 of the algorithm, when the stopping condition is satisfied, the estimate
for the evidence is completed by adding the contribution of the remaining (active

or “live”) M samples in the ensemble to Zi; namely, Ẑ → Zi + M−1
(

p(d|θ1, I) +

p(d|θ2, I) + . . . + p(d|θM , I)
)

χi, where p(d|θk, I) (k = 1, 2, . . . , M) are the likelihood
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values evaluated at the remaining M samples. Although the focus of the nested
sampling algorithm is to evaluate the evidence Z, it is important to note that the
samples discarded in Step 5 of the algorithm are actually weighted samples θi drawn
from the posterior distribution p(θ|d, I) ∝ p(θ|I)p(d|θ, I). More specifically, the ith
discarded sample θi in Step 5 of the algorithm can be interpreted as a sample drawn
from the posterior distribution of θ with weight given by ωi = Li(χi−1 −χi)/Ẑ where
Ẑ is the estimate of the evidence obtained in Step 10 on termination of the algorithm.
Finally, it should be noted that the samples (discarded and active) obtained in the
nested sampling algorithm can be used to provide also an estimate for the information
gain S given in Eq. (5), using a quadrature rule similar to that used to approximate
the evidence Z.

The nested sampling algorithm assumes in Step 7 that drawing a sample from the
prior distribution p(θ|I) lying within a prescribed hard likelihood constraint given
by p(d|θ, I) > L∗ is possible. To this purpose, Feroz et al. [30] developed a very
efficient algorithm (which the authors refer to as MultiNest) for sampling from a
prior within a hard likelihood constraint using a very sophisticated procedure for
decomposition of the support of the likelihood above a given bound L∗ into a set of
overlapping ellipsoids and then sampling from the resulting ellipsoids. The algorithm
is appropriate for sampling from posterior distributions with multiple modes and with
pronounced curving degeneracies in a high-dimensional parameter space.

5 Applications

The International Monitoring System (IMS) consists of a comprehensive network of
seismic, hydroacoustic, infrasound, and radionuclide sensors as part of the verification
regime of the Comprehensive Nuclear-Test-Ban Treaty which bans nuclear explosions.
A subset of the IMS is the subnetwork of radionuclide gamma detectors/particle filters
for the measurement of the activity concentration for various radionuclides (e.g., par-
ticulate or aerosol species such as cesium-137 and iodine-131 and/or noble gases such
as xenon-133). The IMS radionuclide network will (eventually) have 80 monitoring
stations worldwide for the measurement of the activity concentration for particu-
late/aerosol radioactive species, of which at least 40 of those stations would also have
the capability to measure the activity concentration of noble gases [17]. The sta-
tions provide 12 or 24 h-averaged activity concentrations of the various radionuclides
depending on the technology used.

In this section, we apply the Bayesian inferential methodology for source reconstruc-
tion to two different cases involving concentration measurements made by sensors
that form part of the IMS radionuclide network. The first case involves emission rate
profile reconstruction (temporal history of the emission rate at a fixed known loca-
tion) using some simulated concentration data and the second case involves source

DRDC-RDDC-2014-R71 19



 

Figure 1: Locations of the seven sampling stations (yellow markers) from the International
Monitoring System radionuclide network used for the emission rate profile reconstruction.
The location of the Xe-133 tracer source was assumed to be known a priori to be at the
Fukushima Daiichi nuclear power plant (red marker).

reconstruction (location and emission rate) using some real concentration data.

5.1 Case 1: Emission rate profile reconstruction

In this case, simulated concentration data were generated at seven sampling stations
that formed part of the IMS radionuclide network and the Bayesian inference scheme
described above was applied to reconstruct the unknown emission rate profile for the
release. The contamination events “observed” by these sampling stations have been
simulated based on a real-world release; namely, the dispersion of radionuclides and
noble gases released during the Fukushima Daiichi nuclear power plant accident.

On 11 March 2011, a magnitude 9.0 earthquake followed by a large tsunami occurred
off the Pacific coast of Japan. The tsunami caused the Fukushima Daiichi nuclear
power plant to lose electric power, which resulted in the accidental release of a large
amount of radioactive material from the plant in the subsequent hours and days after
the incident [31]. Initial estimates of the release of the radionuclide materials from
the plant were based on the known inventory of the radionuclides in the nuclear
reactor and the possible behavior of these materials when subjected to the reactor-
core meltdown conditions.
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Subsequently, a number of researchers have tried to estimate the source term for this
release by combining information from atmospheric dispersion calculations with avail-
able environmental monitoring data (which include both air concentration and sur-
face deposition measurements). For the purposes of validating our proposed Bayesian
methodology for emission profile reconstruction, we will use the emission rate profile
for xenon-133 (Xe-133) from the Fukushima nuclear power plant, as determined by
the analysis conducted by Stohl et al. [32], as the “true” (albeit unknown for our
purposes) source term. The choice of the emission rate profile of Stohl et al. was for
convenience only, and not because it was considered superior to emission rate profiles
derived by other research groups.

Owing to the fact that the re-analyzed meteorological fields were limited only to a
10-day temporal duration after the earthquake that caused the Fukushima Daiichi
nuclear power plant failure, the seven nearest IMS monitoring sites to this power
plant were used to synthesize the concentration data for the first case study. It should
be noted that in reality not all of these sites have noble gas monitoring capability,
but for the purposes of this hypothetical example which was used to provide an
initial test of the source reconstruction methodology proposed herein, this should not
matter. In consequence, for this (hypothetical) case study, we synthesized artificial
concentration data for these seven sampling IMS stations using the “true” source
term for the radioxenon release from the Fukushima nuclear power plant. These seven
sampling stations are shown in Figure 1, along with the location of the release. The
geodetic locations of these seven stations are summarized in Table 1. To simulate the
activity concentration time series “seen” at these seven stations, we used a forward-
time Lagrangian stochastic model driven by re-analyzed meteorological wind fields
with a 6-h temporal resolution obtained over the temporal interval from 11 March
2011 00:00 Coordinated Universal Time (UTC) to 21 March 2011 12:00 UTC. The
synthetic concentration time series at the seven stations were sampled with a temporal
resolution of 12 h. The synthetic concentration data generated by the forward-time
Lagrangian stochastic model (using the re-analyzed meteorological wind fields as
input) were embedded within white and normally distributed noise with a standard
deviation equal to 10% of the true concentration amplitude in order to simulate
measurement uncertainty.

The adjunct concentration fields C∗ required for the Bayesian computation were ob-
tained using a backward-time LS model (which corresponds nominally to the adjoint
of the forward-time LS model). Owing to errors in the numerical solution of the
model equations that constitute the forward and backward LS models, it was found
that duality relationship 〈C|h〉 = 〈C∗|S〉 was not verified. The discrepancy in this
relationship can be interpreted as the contribution to the model error component
in the Bayesian analysis (viz., if the duality relationships were exactly satisfied in
this example, then the uncertainty arising from the model error would vanish ex-
actly). Indeed, informal tests conducted on a related LS dispersion model (utilizing
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Table 1: The latitudinal and longitudinal coordinates of the seven sampling stations used
for the emission rate profile reconstruction.

Location Station ID Latitude (◦N) Longitude (◦E)
Sidney, BC CAP14 48.6502 −123.399

Baja California MXP44 29.9500 −115.117
Bilbino RN057 68.0500 166.450

Petropavlovsk RUP60 53.0167 158.650
Sacremento USP70 38.5556 −121.469

Sand Point, Alaska USP71 48.6502 −160.497
Midway Island USP78 28.2000 −177.356

a Lagrangian particle-model kernel which is similar to that employed in the models
applied herein) with respect to the forward-backward equivalence as embodied in the
duality relationship has shown that the departure in this relationship is typically on
the order of a factor of 2 or more.

Because the location of the source (Fukushima Daiichi nuclear power plant) was
known a priori in this example, the source parameter vector here reduces to θ =
(Qs,1, Qs,2, . . . , Qs,Ns

) with Ns = 20. Each component of θ corresponds to the emission
rate averaged over a 12-h time interval. More specifically, with reference to Eq. (20),
the predicted concentration C̄J(θ) is obtained from

C̄J(θ) =
Ns
∑

k=1

āJkQs,k, (27)

with

āJ,k ≡
∫ min(tJ ,tk)

tk−1

C∗(xs, t′|xJ , tJ) dt′, (28)

where āJk is the coupling (or transfer) coefficient that relates the emission at the
k-th time interval to the expected concentration measured at the space-time point
(xJ , tJ). Note that in this case, the source location xs is known a priori to be at
the Fukushima Daiichi nuclear power plant (and, as a consequence, the values of the
transfer coefficients āJ,k are known a priori).

In this example, we applied nested sampling to draw samples from the posterior dis-
tribution of θ (source emission rate profile). Owing to the fact that the emission
rate profile varies over many orders of magnitude, we reconstruct the common log-
arithm of the emission rate (q ≡ log10(Q)) rather than the emission rate directly.
The prior distribution for q is assumed to be uniform (flat), implying a non-uniform
(or non-flat) prior for Q. Indeed, recall that a uniform prior on a parameter set θ
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Figure 2: The best estimate for the Xe-133 emission rate time profile given by the posterior
mean (solid red curve) compared to the true emission rate time profile (solid black curve),
along with the 90% credible (HPD) interval for the emission rate profile estimate (gray-
shaded region).

does not correspond to some uniform prior on some nonlinear function of it, F(θ)
(or vice-versa). The two priors are related by

p(θ|I) = p(F(θ)|I)
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, (29)

where |∂F/∂θ| is the determinant for the Jacobian of the transformation. In the
current example, logarithmic uniform priors are imposed on q with a lower bound of
qmin ≡ log10(Qmin) = 12 and an upper bound of qmax = log10(Qmax) = 18 where Q has
units of Bq h−1. In the specification of the likelihood function [cf. Eq. (10)], the noise
error variance is specified as s2

J = s2
e,J + s2

m,J where the measurement error standard
deviation se,J was assigned to be 10% of the measured concentration data dJ and the
model error standard deviation sm,J was assigned (arbitrarily, or perhaps nominally)
to be 25% of the predicted concentration C̄J(θ). Recall that the contribution to
the model error here arises solely from numerical errors in the solution of the model
equations for the forward and backward LS dispersion models which lead to the
duality relationship not being verified exactly in practice (as it would be in theory in
the absence of these numerical errors).

Figure 2 displays the best estimate of the time profile for the emission rate obtained
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Figure 3: Marginal posterior probability distribution for log10(Q) obtained for the 12-h
time interval (a) (48,60) h and (b) (168,180) h after the arbitrary time origin t0 (11 March
2011 00:00 UTC). The solid vertical line indicates the true value for the emission rate and
the dashed vertical line corresponds to the best estimate of the emission rate obtained as
the posterior mean of the associated marginal posterior probability distribution.

as the posterior mean (solid red curve) which can be compared with the true emission
rate profile (solid black curve). In addition, the figure also presents the 90% credible
(HPD) intervals for the emission rate profile (gray shaded area). It is noted that
the gray-shaded region does appear to bracket the true emission rate profile at the
indicated level of confidence. In general, the emission rates up to about 100 h (ap-
proximately or better) after the arbitrary time origin t0 (taken to be 11 March 2011
00:00 UTC) are relatively well constrained by the observed activity concentration
data (taken from the seven sampling stations). However, the 90% credible bounds
for emission rates obtained for times greater than about 100 h after t0 are seen to
be very large, implying that the emission rates over this period of time are not well
constrained by the information contained in the activity concentration time series.

The synthetic activity concentration time series data from the seven sampling stations
only cover the time period up to 10 d after the arbitrary time origin t0. However,
for many of the sampling sites in North America, it takes approximately 7 d after
the initial release of radioxenon in a given (emission) period to be transported and
dispersed across the Pacific Ocean by the prevailing winds and contribute to the
measured concentration time series at a sampler location on the west coast of North
America. As a consequence, the activity concentration time series from the majority
of the sampling sites (which are truncated 10 d after the arbitrary time origin) do not
contain contributions to the concentration time series arising from emissions at the
Fukushima Daiichi plant that occur 100 h after t0. It is for this reason that the 90%
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credible intervals for the emission rates are so large 100 h after t0, as these emission
rates are not constrained by the concentration time series observed for the (restricted)
time period of up to 10 d after t0.

Figure 3 shows the marginal posterior distribution of the emission rates for two
12-h time intervals after the time origin t0; namely, for the interval (48, 60) h and
(168,180) h after t0. For the earlier time interval, it is seen that the marginal pos-
terior distribution for the emission rate Q is well defined and occupies only a very
small region interior to the logarithmic uniform prior distribution for this emission
rate. This implies that the activity concentration data contains sufficient information
to constrain this particular emission rate. Furthermore, note that the histogram for
this case appears to be approximately Gaussian with the peak of the distribution
centered on the true value of the emission rate for this interval. On the other hand,
the marginal posterior distribution for the emission rate obtained at the later time
interval is very broad, implying that the emission rate for this interval is not well con-
strained by the available activity concentration data (viz., the data does not contain
sufficient information to estimate this parameter accurately). Indeed, the marginal
posterior distribution for the logarithm of the emission rate for the later time interval
is seen to coincide (approximately or better) with the log uniform prior distribution
for this parameter, implying there is no information in the activity concentration that
can be used to constrain this emission rate.

In addition, the limited temporal extent of the activity concentration time series used
for the emission rate profile reconstruction in this example, demonstrates the advan-
tage of the Bayesian inferential methodology. The credible intervals for the emission
rate parameters shown in Figure 2 as well as the posterior distributions of the emission
rate exhibited in Figure 3 provide an objective indication of certainty/uncertainty in
the recovery of the emission rate. Without such knowledge, it is difficult to assess the
significance that one should attribute to a particular estimate for the emission rate.
This information allows one to assess objectively that the emission rates recovered at
the later times are not constrained by the information in the activity concentration
time series. To obtain better estimates for these later emission rates will require
activity concentration time series be measured at times longer that 10 d after t0.

The nested sampling allows an estimation of the information gain S to be obtained.
For this example, the information gain obtained from the activity concentration data
d was found to be 18.6 natural units or nits (or, equivalently, 26.8 binary units or
bits), implying that the information contained in the activity concentration allowed
the “posterior volume” of the hypothesis space (volume of hypothesis space of rea-
sonably large plausibility after the receipt of the concentration data) to decrease by a
factor of exp(S) ≈ 1.194 × 108 relative to the “prior volume” of the hypothesis space
(volume of hypothesis space of reasonably large plausibility before the receipt of the
concentration data). Furthermore, this reduction in the hypothesis space does not
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occur uniformly in every direction. The directions in the hypothesis space associated
with the emission rates at the earlier times exhibit the most significant reduction in
the “posterior volume” relative to the “prior volume”, whereas the directions in the
hypothesis space associated with the emission rates at the later times do not exhibit
a reduction of the posterior volume relative to the prior volume at all (cf. Figure 2).

5.2 Case 2: Source reconstruction

The current case study involves the use of some real measurements of activity con-
centrations obtained from the IMS radionuclide network for source reconstruction.
The source for this example consists of the stack emissions from Chalk River Labo-
ratories (CRL). Chalk River Laboratories houses an international production facility
for medical radioisotopes. It is located at a latitude of 46.15◦ N and at a longitude
of −77.37◦ E, about 180 km northwest of the city of Ottawa, Ontario. A charac-
terization of the weekly stack emissions of Xe-133 from the CRL medical isotope
production facility over a 5-year period yielded a median daily emission of about 24
TBq (or, equivalently, an emission rate of about 1.0 × 1012 Bq h−1).

For this case study, we utilized Xe-133 activity concentration measurements obtained
from three sampling sites in North America as shown in Figure 4. The three sites
form part of the noble gas monitoring network of the International Monitoring Sys-
tem. In particular, the three stations exhibited in Figure 4 are as follows : CAX17
(St. John’s, Newfoundland located at latitude 47.59◦ N and longitude −52.74◦ E);
USX75 (Charlottesville, Virginia located at latitude 38.0◦ N and longitude −78.4◦ E);
and, USX74 (Ashland, Kansas located at latitude 31.17◦ N and longitude −99.77◦ E).

At each monitoring site, one of two different monitoring technologies is employed to
measure radioxenon. The St. John’s site has a Système de Prélèvements et d’Analyse
en Ligne d’Air pour quantifier le Xénon (SPALAX) high-resolution gamma system
operating on a 24-h sample collection period, while the remaining sites have a Swedish
Automatic Unit for Noble Gas Acquisition (SAUNA) beta-gamma coincidence system
with a 12-h sample collection period. Both systems employ activated charcoal to
remove xenon from the air for radioxenon analysis. After the measurement process
is complete, the xenon sample can be stored in an archive bottle for optional re-
measurement either on-site or in an off-site laboratory. The stable xenon volume
collected varies approximately from between 2 ml to 8 ml depending on the technology
used, but both technologies have a roughly equivalent Xe-133 sensitivity of about 0.2
mBq m−3.

Activity concentrations of Xe-133 for Case 2 were obtained for the single month
of December 2011. For this case study, we used 36 activity concentration samples
extracted from the three sampling sites. These concentration samples were then
blocked-averaged over a temporal duration of 3 d to give 8 concentration data points
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Figure 4: Locations of the three sampling stations (yellow markers) from the International
Monitoring System radionuclide network used for Case 2. The location of the Xe-133 tracer
source (red marker) was at Chalk River Laboratories.

dJ that were used as the input for the source reconstruction. In other words, N =
8 for this case study. As already mentioned, re-analyzed meteorological fields for
December 2011 were used to “drive” an operational backward LS model to determine
C∗. These adjunct concentration fields were then used for the rapid determination of
the predicted concentration C̄J(θ) for an arbitrary source hypothesis θ.

For the source reconstruction, it is also necessary to provide an estimate for the noise
error variance s2

J [cf. Eq. (10)]. This estimate includes two major contributions: (1)
an estimate for the sensor error sampling variance s2

e,J in the measurement of dJ and

(2) an estimate for the model error variance s2
m,J in the prediction of C̄J(θ). These

two contributions to the noise error variance were added in quadrature to give s2
J =

s2
e,J + s2

m,J . Very good estimates for the sensor error standard deviation (or square
root of the variance) were provided for the expected precision in the measurements
of the activity concentration at each of the three sampling stations. In contrast, no
estimates for the expected precision in the predicted concentrations were available. As
a consequence, the model error standard deviation was assumed (rather arbitrarily)
to be 50% of the predicted concentration C̄J(θ).

The emission source is near ground level so that the height of the source is not
of any interest for the reconstruction. Consequently, the unknown source location
parameters are taken to be the source longitudinal (xs) and latitudinal (ys) positions.
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Figure 5: Univariate (diagonal) and bivariate (off-diagonal) marginal posterior distribu-
tions of the source parameters: longitudinal position xs, latitudinal position ys, and emission
rate Qs. A solid square or a solid vertical line indicates the true parameter values, whereas
a solid circle or a dashed vertical line indicates a best estimate (posterior mean) for these
parameter values.

Furthermore, the CRL release is approximated as a continuously emitting point source
having a constant emission rate Qs. In other words, Ns = 1 in Eq. (11) and Qs ≡ Qs,1

with t0 → −∞ and t1 → ∞ for this case, so θ = (xs, ys, Qs). The MT-DREAM(ZS)

algorithm was used to draw samples from the posterior distribution of θ, with the
initial population for the archive of past states obtained by sampling from the prior
distribution p(θ|I) [see Eq. (13)]. For this prior distribution p(θ|I), the various
hyperparameters are defined a priori as follows: (1) the minimum and maximum
emission rates are prescribed as Qmin = 1.0 × 1015 µBq h−1 and Qmax = 1.0 × 1020

µBq h−1, respectively and (2) the prior bounds for the source location (xs, ys) are
given by D = (−125◦ E, −45◦ E) × (25◦ N, 75◦ N) (an a priori spatial domain that
encompasses the entire North American continent).
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Table 2: The posterior mean, posterior standard deviation, and lower and upper bounds
of the 95% HPD interval of the parameters xs (◦E), ys (◦N), and Qs (µBq h−1) calculated
from samples of θ drawn from the posterior distribution p(θ|d, s, α, β, I).

Parameter Mean Standard Deviation 95% HPD Actual
xs (◦E) −72.71 1.22 (−76.71, −71.56) −77.37
ys (◦N) 42.51 0.32 (41.86, 43.35) 46.15

Qs (µBq h−1) 6.68 × 1017 8.55 × 1016 (4.98, 8.33) × 1017 1.0 × 1018

The samples of θ drawn from the posterior distribution were used to determine the
source characteristics (location, emission rate). To this purpose, source parameter
estimates were obtained directly from the multiple chains of samples generated by
the MT-DREAM(ZS) algorithm after convergence of the chains as determined by the

Gelman-Rubin R̂ statistic. Figure 5 displays the univariate (diagonal) and bivariate
(off-diagonal) marginal posterior distributions for the source parameters. The solid
vertical line delineates the true value of the parameter and the dashed vertical line in-
dicates the best estimate (posterior mean) of the parameter in the univariate marginal
posterior distributions. Similarly, for the bivariate marginal posterior distribution of
various combinations of parameters, the solid square marks the position of the true
parameter values and the solid circle exhibits the best estimates (posterior means) of
these parameters. It should be noted that the axes limits are chosen to display the
regions of highest probability in the marginal posterior probability distributions for
the parameters. As a result, in certain cases these regions do not contain the true
parameter values (with the result that some of the panels in Figure 5 do not contain
either the solid square or solid vertical line representing the true parameter values).

Table 2 summarizes the posterior mean, posterior standard deviation, and lower and
upper bounds for the 95% credible (or HPD) interval of the recovered source param-
eters. A perusal of these values shows that the accuracy in the source reconstruction
is quite good for both the location (considering the fact that the reconstruction was
undertaken on a continental scale) and the emission rate. In particular, the distance
between the true source location and its estimate (obtained as the posterior mean)
is only about 572 km (see Figure 6). Finally, the best estimate of the emission rate
(obtained again as the posterior mean) is within 33% of the true emission rate.

However, an examination of Table 2 shows that the precision in the source parameter
estimates is poorly determined. More specifically, the 95% HPD intervals for the
longitudinal and latitudinal source positions and for the emission rate do not contain
the true source parameters. This defect in the source reconstruction can be attributed
to the difficulties in providing good estimates for the model errors in the prediction
of C̄J(θ). This inability to provide good estimates for the model errors leads to
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Figure 6: Two-dimensional marginal posterior distribution of the source location geo-
referenced on a Google Earth image.

a loss of power in the source reconstruction, and may mask important features of
the measured activity concentration data. Finally, it should be noted that unlike
Case 1 described above where the model errors in the synthetic (albeit idealized)
concentration data arose only from numerical errors in the solution of the model
equations for the forward-time and backward-time LS models, the model errors in
Case 2 for the real concentration data may arise from numerous sources (as outlined
briefly in Section 3.1) and can be much more significant.

Given the complexity in the heteroscedastic variance of the model error, its a priori

specification is highly problematic. In light of these difficulties, let us consider an
alternative measurement model to that introduced earlier in Eq. (6). To this end, let
us now focus on the following alternative measurement model:

dJ = mJC̄J(θ) + nJ , J = 1, 2, . . . , N, (30)

where mJ are unknown multipliers (scale factors) that are applied to the predicted
concentration C̄J(θ) in order to compensate for the model uncertainty. The nJ term in
Eq. (30) represents only the measurement error in the activity concentration dJ . The
model error arising from the predicted concentration C̄J(θ) is compensated through
the use of the multipliers mJ (J = 1, 2, . . . , N).

For the alternative measurement model, the multipliers mJ (J = 1, 2, . . . , N) are un-
known parameters that need to be estimated in addition to the usual source parame-
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Figure 7: Univariate (diagonal) and bivariate (off-diagonal) marginal posterior distribu-
tions of the source parameters: longitudinal position xs, latitudinal position ys, and emission
rate Qs. The true parameter values are shown by a solid square or a solid vertical line and
the best estimates of the parameter values are represented as a solid circle or a dashed
vertical line. The reconstruction was obtained using the alternative measurement model.
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Table 3: The posterior mean, posterior standard deviation, and lower and upper bounds
of the 95% HPD interval of the parameters xs (◦E), ys (◦N), and Qs (µBq h−1) calculated
from samples of θ drawn from the posterior distribution p(θ|d, s, α, β, I). The results are
obtained using the alternative measurement model.

Parameter Mean Standard Deviation 95% HPD Actual
xs (◦E) −77.66 1.04 (−79.21, −74.88) −77.37
ys (◦N) 45.80 1.96 (42.69, 52.64) 46.15

Qs (µBq h−1) 7.97 × 1017 1.75 × 1017 (6.37, 12.5) × 1017 1.0 × 1018

ters. Let us denote the source parameters in this alternative model by θs ≡ (xs, Qs).
Furthermore, let θm ≡ (m1, m2, . . . , mN) denote all other relevant parameters (multi-
pliers in our example). These latter parameters are referred to as nuisance parameters.
Both sets of parameters define the parameter vector as θ = (θs, θm). The likelihood
function for the alternative measurement model is still given by Eq. (10). However,
for this case the estimated noise variances s2

J appearing in the likelihood function
now only include the measurement error contribution. In other words, s2

J = s2
e,J . As

already noted above, this contribution to the uncertainty is well characterized in our
current application implying that the prior uncertainty in the measurement errors
can be specified correctly. For the alternative measurement model, we need to spec-
ify also the prior distributions for the multipliers (nuisance parameters). Towards
this end, uniform priors defined over the range (mmin, mmax) will be used as priors for
the multipliers. Consequently, the prior distribution for the alternative measurement
model replaces Eq. (13) by the following assignment (recalling again that Ns = 1 and
Qs ≡ Qs,1 for Case 2):

p(θ|I) ∝ ID(xs)I(Qmin,Qmax)(Qs) ×
N
∏

J=1

I(mmin,mmax)(mJ ). (31)

Using the alternative measurement model and the modified likelihood function and
prior distribution, we applied the MT-DREAM(ZS) algorithm to sample from the
modified posterior distribution for θ. The hyperparameters that define the prior
distribution for the source parameters θs were exactly as described above. The lower
and upper prior bounds for the multipliers mJ were mmin = 0.1 and mmax = 10.0,
respectively (J = 1, 2, . . . , N where N = 8). The univariate and bivariate marginal
posterior distributions of the various source parameters are displayed in Figure 7.
The solid square or solid vertical line marks the true parameter values. These should
be compared with their best estimates (posterior means) marked by either a solid
circle or a dashed vertical line. Table 3 summarizes the posterior mean, posterior
standard deviation, and lower and upper bounds for the 95% HPD interval for the
source parameters.
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Figure 8: Two-dimensional marginal posterior distribution of the source location geo-
referenced on a Google Earth image. The marginal distribution is for the alternative mea-
surement model.

A perusal of Figure 7 and of Table 3 shows that all the source parameters have been
recovered with very good accuracy. Indeed, the distance between the actual source
location and the best estimate (posterior mean) of the source location is about 44 km
(see Figure 8), and the recovered emission rate is within 20% of the actual emission
rate. The accuracy in the inferred source location is roughly a factor of ten better than
that obtained using the standard measurement model (which does not use multipliers
to try to compensate for the unknown model errors). More importantly, the precision
of the source parameter estimates (viz., the 95% credible intervals) for the alternative
measurement model contain the actual (true) values for the source parameters, in
stark contrast to the reconstruction using the standard measurement model. This
is evident if we compare the inferred source parameter values and their uncertainty
bounds in Table 2 with those in Table 3.

In the practical real-world it is difficult to correctly specify a priori the structure and
scale of the model error. In view of this, the incorporation of multipliers with the
predicted concentrations for model error compensation can improve significantly the
quality of the source reconstruction. Figure 9 shows the univariate marginal posterior
distributions for the various multipliers mJ (J = 1, 2, . . . , 8) and provides evidence of
the complexity in the model error structure for the current problem. Indeed, a perusal
of this figure readily makes evident the complexity in the heteroscedastic model error
structure. Note that the distributions for the multipliers associated with some of the
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Figure 9: Univariate marginal posterior distribution of the multipliers mJ (J = 1, 2, . . . , 8).
The “actual” values of the multipliers are indicated with the solid vertical line which should
be compared with the best estimates (posterior means) of the multipliers.

predicted concentrations are quite broad, indicating that the model error for these
predicted concentrations are not well determined. In other cases, the distributions
for the multipliers (e.g., m2 and m3) are quite narrow, implying that the data contain
reasonable information to constrain the model errors associated with these multipliers
fairly well.

Although the true values of the multipliers are unknown, we can nevertheless obtain
an independent estimate for their values as follows. We can use the actual source
parameters θ∗

s to predict the activity concentration C̄J(θ∗
s) that would be expected

at the various observation stations. Using this information, we can provide an inde-
pendent point estimate for the multipliers as m̂J = dJ/C̄J(θ∗

s), J = 1, 2, . . . , 8. The
solid vertical lines in Figure 9 exhibit these “actual” values for the multipliers. These
values should be compared with best estimates (posterior means) of the multipliers.
Observe that the best estimates of the multipliers are broadly consistent with the
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“actual” values for the multipliers obtained from the indicated point estimates. Fur-
thermore, the width of the posterior distribution of the various multipliers are seen
to enclose the “actual” values for the multipliers. Finally, even though some of the
multipliers are highly uncertain, inclusion of multipliers to compensate for the model
errors does lead to significantly improved estimates for the source parameters (both
in accuracy and in precision).

6 Discussion and conclusions

In this study, a Bayesian inferential methodology (Bayesian probability theory) has
been proposed for source reconstruction in the context of activity concentration data
that would be available from an worldwide operational network of sensors (Interna-
tional Monitoring System). This methodology for source reconstruction has been ap-
plied to two different case studies: namely, emission rate profile reconstruction for the
Fukushima Daiichi nuclear power plant release using synthetic activity concentration
data generated for seven sampling stations and a more difficult situation involving
the reconstruction of the source characteristics from the CRL release using only a
small number of real (actual) activity concentration measurements (8 measurements)
obtained from only three sampling stations. All these stations were part of the IMS
radionuclide network. Both case studies involved the utilization of an operational
backward LS model for long-range transport by the atmosphere on a continental or
hemispheric scale.

A detailed description of Bayesian probability theory as applied specifically to source
reconstruction has been provided in this report. Furthermore, efficient and robust
MCMC algorithms (e.g., nested sampling, multiple-try differential evolution adaptive
Metropolis sampling) for estimating and summarizing the information embodied in
the posterior probability distribution of the source parameters θ have been described
and applied successfully to the two case studies chosen to illustrate the utility of the
proposed methodology. More specifically, it has been demonstrated how Bayesian
probability theory in conjunction with MCMC provides both a rigorous theoretical
and practically applicable framework for the recovery of various source parameters
(e.g., location, emission rates) and for quantification of the uncertainties in the re-
covered estimates that take into account the measurement errors in the concentration
data, the model errors in the predicted concentrations used for the interpretation of
the data, and any prior information we may have.

The experience with addressing the second case involving the use of real activity
concentration data demonstrated that the principal difficulty in the reconstruction
lay in providing the correct a priori specification of the model error for the various
predicted concentrations associated with the measured concentrations used for the
source parameter recovery. A naïve specification for the model error gave a source
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reconstruction that was quite reasonable in terms of the accuracy in the recovery
of the location and emission rate, but the precision in the estimates was generally
poor in the sense that the reported uncertainty bounds in the recovery of the source
parameters did not include the actual (true) values for these parameters. This led to
the development of an alternative measurement model which incorporated multipliers
(scale factors) with the predicted concentrations in order to compensate for the model
errors. The application of this alternative model was shown to yield significantly
improved estimates for the source parameters, both in terms of their accuracy and
their precision. Undoubtedly more sophisticated measurement models (required for
the assignment of the likelihood function) can be formulated, being purely a matter
of improved intuition and educated intelligence (creativity, insight and imagination),
which can lead to further improvements in the source reconstruction.

The avalanche of new data obtained from the International Monitoring System that
is managed under the auspices of the United Nations Comprehensive Nuclear-Test-
Ban Treaty Organization for treaty compliance verification will require ever more
sophisticated statistical tools for source reconstruction. In this report, we describe
a preliminary application of Bayesian probability theory for source reconstruction in
the context of using IMS station data for possible compliance verification. Even so,
the current effort has shown that its successful application to real-world problems
using real sensor networks and operational dispersion models will require a better
understanding of both the scale and structure of the model error in the predicted
concentrations. It is anticipated that the proper incorporation of information about
the underlying model error in conjunction with Bayesian inference employing state-
of-the-science MCMC sampling algorithms (such as nested sampling and differential
evolution adaptive Metropolis sampling) can potentially provide a very flexible frame-
work for source reconstruction.

The next step in this effort would be to provide more validation of the proposed
Bayesian inference methodology for source reconstruction. This would involve the
careful consideration of additional cases that embody more complex source distribu-
tions and situations that are of relevance to the detection and identification of nuclear
detonation events by the observational technology available in the IMS. Furthermore,
it would be useful to generalize the Bayesian methodology described herein in the fol-
lowing manner. The focus in this report has been on the application of Bayesian
probability theory to the parametric estimation of various source parameters θ using
only a single atmospheric dispersion model for the predicted concentration. How-
ever, situations can arise when one has available several models for the predicted
concentration, each of which can be driven by one or more (different) re-analyzed
or forecasted meteorological wind fields. The question that arises is how to combine
these various concentration predictions from the various models to improve the infer-
ence of the source parameters θ. It is anticipated that this important problem can
be addressed in a straightforward manner as the formal Bayesian approach already
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encompasses the rigorous schema for utilizing multimodel ensembles for inference. In-
deed, a straightforward generalization of the inference methodology to accommodate
multimodel ensembles through a model-averaged posterior distribution would enable
one to combine uncertainty at both the model and parameter levels in a rigorous
fashion and also to fuse different diagnostic data sets (e.g., radionuclide, seismic, in-
frasound)1 in the parameter space, providing ultimately a more complete description
of the state of knowledge of θ.

1It should be noted that the International Monitoring System also includes seismological, hydroa-
coustical, and infrasound diagnostics which can be potentially used in addition to the diagnostic
(activity concentration) provided by the radiological portion of the IMS for source term estimation.
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